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Note 

An ILUCG Algorithm Which Minimizes in the Euclidean Norm* 

This paper presents an algorithm which solves sparse systems of linear equations of the 
form Ax = y, where A is non-symmetric, by the Incomplete LU Decomposition-Con- 
jugate Gradient (ILUCG) method. The algorithm minimizes the error in the Euclidean 
norm 11 xi - x 112, where xi is the solution vector after the ith iteration and x the exact 
solution vector. The results of a test on one real problem indicate that the algorithm is 
likely to be competitive with the best existing algorithms of its type. 

As is well known, the Incomplete Cholesky-Conjugate Gradient method (ICCG) 
has been found to be very effective in the solution of sparse systems of linear equatons 
of the form Ax = y [l] with A symmetric. This method is a much improved version 
of the conjugate gradient method developed by Hestenes and Stiefel [2], for instead of 
iterating with the original matrix A, the approximate inverse of A is used. In the 
ICCG method, the approximate inverse is obtained by incomplete Cholesky LLT 
decomposition where a pre-selected sparsity pattern, usually that of A, is forced 
upon the L and LT matrices. Kershaw [3] further generalized the ICCG method to 
treat non-symmetric systems by using a general LU decomposition of matrix A, and 
this is known as the Incomplete LU decomposition-Conjugate Gradient (ILUCG) 
method. 

In the derivation of the algorithm for treating non-symmetric matrices, Kershaw [3] 
transforms the system 

Ax = y (1) 

into 
Mx’ = y’ (2) 

where 
M = L-‘AU-l; x’ 7 Ux 

and 
y' = L-ly (3) 

He then constructs a version of the Conjugate Gradient algorithm for the system (2) 
which minimizes xi - x’ in the Euclidean norm: 

I/ x; - x’ iI2 = (xi - x’, x; - x’) 
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where xi is the solution vector after i iterations. As a result, xi - x of system (1) is 
minimized in the N norm 

11 xi - x jlN = (Xi - x, N(x, - x))l/2 

where N = UTU, as is clear from the transformation x’ = Ux. 
It is however quite easy to construct a conjugate gradient algorithm with incomplete 

LU decomposition which minimizes jl xi - x II2 instead of Ij xi - x’ l12. We have 
constructed and tested such an algorithm and have found its properties sufficiently 
interesting to merit further investigations. 

In order to compare the two algorithms formally we find it best to use the nomen- 
clature of Hestenes [4]. Hestenes provides a scheme for constructing various conjugate 
gradient algorithms for non-symmetric matrices: 

To solve a system Ax = y where A is a square non-singular matrix, choose a pair of 
positive Hermitian matrices H and K and define another positive Hermitian matrix 
N through N = A*HA, where A* is complex conjugate of A. Then a conjugate 
gradient algorithm which minimizes /I xi - x /I,,, for all i among the algorithms of the 
form 

Xi = X0 + P,&l(T)T(X - X0), 

where P is a polynomial in T = KN of degree i - 1, is given by: 

I.0 = y - Ax, 
go-A*H 
PO = Kg, 

and the following recursive relationships: 

ki, Kgd = (ri , H*AKA*Hrd 
OIi = (Pi 9 NPJ (Pi 5 NPi) 

xi+1 = xi + %Pi 

ri+1 = ri - ol,Api 

gi+l = A*Hri+l 

pi = (g; , 2:;” = (ri+l , H*AKA*Hri+l) 
(4.6) Z? z (ri , H*AKA*Hr$) 

or 
Pi+1 = Kg,+1 + flipi 

Pi+1 = KA*Hc+~ + iSpi 

Here x0 is the initial guess for x. 
In view of (4.9, the following identity holds: 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.7) 

(4.8) 

(gi , Kgi) = (ri , H*AKA*H rJ (4.9 
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For our choices of H and K, it will not be possible to use (4.5), so (4.8) will be used 
instead of (4.5) and (4.7) and (4.9) will be substituted into (4.2) and (4.6). We choose 
also A to be real so that A* and H* will be replaced by AT and HT, the transposes 
of A and H respectively. We shall also make use of the lower and upper triangular 
matrices L and U where it is implied that their product LU is a reasonable approxima- 
tion of A. 

The algorithm of Kershaw, equations (9a)-(9e) of [3], now results from the choice of 

and 

H = A-TUTU&l 

K = (UTU)-l AT(LLT)-l A(UTU)-l (5.1) 

From which follows: 

N = ATHA = UTU 

and 

T = KN = (UTU)-l AT(LLT)-lA 

and the subsidiary relationships: 

(5.2) 

and 

KATH = (UTU)-l AT(LLT)-l (5.3) 

HTAKATH = (LLT)-l 

to be used in (4.8) and (4.9). 
With the assumption LU N A, it follows from (5.2) that T 31 Z, where I is the unit 
matrix. 

We now try to construct another algorithm which maintains the T N I relationship 
but which also results in N = I. This can be achieved with the choice: 

and 

resulting in: 

KATH 

where 

H = (AAT)-1 

K = AT( UTLT)-l(LU)-lA (6.1) 

N=ATHA=Z; T=KN=K (6.2) 

AT(LU)-T(LU)-1; HTAKATH = (LU)-T(LU)-’ (6.3) 

(LU)-T = [(LU)--1]T 
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The algorithm (4) then becomes: 

r, = y - Ax, ; p. = AyLU)-T (Ix)-’ r. 

ol, = U W ri , WY cl z 
(Pi > Pi) 

xi+1 = Xi + oljpi 

ri+1 = ri - CtiApi 

B- = W-F1 bl , WY ri+J I [(HI)-I ri , (LU)-l r+] 

Pi+1 = AT(LU)-T (LU)-l riiml + pipi 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

In following the procedure of Hestenes [4], we were able to choose minimization in 
the Euclidean norm by forcing N = I in (6.2) from which H followed uniquely, while 
K had to be composed in such a way that it both approximated I and resulted in 
simple and manageable expressions for KATH and HTAKATH in (6.3). One may 
wonder, however, if it is possible to arrive at the same algorithm by simply trans- 
forming the original system as Kershaw has done. [See our Eqs. (1) through (3)]. 
The answer is yes, and the required transformation is given by A4x’ = y’, where 
M = (LU)-lA; x’ = x; and y’ = (LU)-ly, which substituted into Eqs. (3’a) through 
(3’e) of Ref. [3] leads to our algorithm. Since in this transformation x is identical to 
X’ and Kershaw’s algorithm (3’) minimizes x’ in the Euclidean norm, it follows 
that in our algorithm x must also be minimized in the same norm. 

Our algorithm contains the same amount of computational work as that of equa- 
tions (9’) of Kershaw [3] so in this sense, the two are strictly comparable. As for the 
rate of convergence, we have compared the two algorithms on one problem only: a 
calculation of 2-dimensional transport of Tokamak plasmas using a dynamical 
grid method [5]. In this calculation a moving non-orthogonal grid system produced a 
simple 9 diagonal matrix A with variations in magnitude of not more than IO4 among 
the matrix coefficients and the immediate sub and super diagonals having values 
around 0.5 after the diagonal elements have been normalized to 1.0. The dimension 
of the matrix A was 15 x 40. Both Kershaw’s algorithm (K) and ours (P) were 
generated by an ILUCG generator program [6] and the values of E = 11 xi - x /i2/i/ x II2 
compared. Here x is the ‘exact’ solution obtained after a large number of iterations 
when E < 1O-2o is satisfied, ji x Ii2 = (z.,“, xj2)1/2 where J is the dimension of the 
matrix A and 

11 xi - x II2 = (Xi - x, xi - x)l/2 

xi being the ‘solution’ vector after i iterations. 
Figures la and lb show examples of two comparisons: the initial guess for x 

being much less accurate in (la). Tn both cases, our algorithm (P) appears to give 
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FIG. 1. Convergence curves using the Euclidean norm e. Both the Kershaw algorithm (K) and 
our algorithm (P) (Eqs. (7.1)-(7.6) are shown. (a) applies to a case where the initial guess for the 
solution vector is less accurate than that of(b). 
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more accurate solutions down to E N 5 x 1O-5 beyond which the two are equally 
good. Furthermore, while the P-algorithm gives a monotonically decreasing E, the 
K-algorithm does not. 

Figure 2 gives a comparison of the maximum (infinity) norm given by: 

E _ (maxIxi--xl)*J 
max - II x II2 

In conclusion, we would like to emphasize that these results have only been tested 
on one problem only, hence it may or may not represent a typical behavior. The main 
purpose of this letter is to draw attention to our algorithm (7) and invite further 
comparisons. 
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FIG. 2. Convergence curves using the maximum (infinity) norm 

(maxI%--xXI)*J 
Emax = 

Ilxlla . 
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